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Sterile Neutrinos

The neutrino sector is perhaps the least well-
understood aspect of the Standard Model. Multiple
experiments have detected non-Standard Model be-
havior – most notably, the reactor anomaly [?], the
MiniBoone anomaly, and the gallium anomaly [?] –
suggesting the possibility of one or more additional
neutrino species. However, a sterile neutrino at the
same temperature as the active neutrinos – that is,
one with a substantial mixing angle – is not consis-
tent with the radiation energy density measurements
of the early universe from Planck and WMAP [?].
However, there are numerous mechanisms to create
a sterile neutrino that does not conflict with current
cosmological bounds.

For instance, such a neutrino could be produced
by Mikheyev-Smirnov-Wolfenstein (MSW) resonant
conversion of active neutrinos driven by a net lep-
ton number [?]. Since this production mechanism
requires adiabaticity, it would only convert low-
energy active neutrinos – resulting in a non-thermal
spectrum [?]. These neutrinos would also be non-
relativistic at much earlier epochs than a thermal
sterile neutrino, and could provide a candidate for
cold dark matter [?].

Since the n-p ratio at big bang nucleosynthesis
(BBN) depends sensitively on the flux of electron
neutrinos [?], any conversion between active and
sterile neutrinos would affect primordial elemental
abundances. Current primordial deuterium mea-
surements have an error bar of <2% [?]. This allows
us to probe the weak interactions at the BBN epoch
with precision, as described in Smith et al. [?].

Figure 1: The CMB, as imaged by Planck.

MSW-like Mixing

We use a self-consistent treatment of weak interac-
tions and neutrino physics through the weak decou-
pling, big bang nucleosynthesis, and photon decou-
pling epochs as developed in Grohs et al. [?].
We consider a swap between electron neutrinos and

sterile neutrinos only, with some adiabaticity para-
mater α that determines the fraction of the energy
bin that is swapped.
This adiabaticity parameter is equal to the Landau-
Zeener jump probability, as below:
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In order to evaluate H, we must determine the po-
tential seen by an electron neutrino (the potential
seen by a sterile being zero). There are two major
components to this potential; the so-called “thermal"
term and the density term.
We first consider the density term:

H(νs) = 0 (5)

H(νe) = 3
√

2
2
GFnb

ye −
1
3

 + (6)
√

2GF

2 (nνe − nν̄e) +
nνµ − nν̄µ

 + (nντ − nν̄τ)


η = nb
nγ

(7)

Le = 2 (nνe − nν̄e) +
nνµ − nν̄µ

 + (nντ − nν̄τ)
nγ

(8)

nγ = 2ζ(3)T 3

π2 (9)

nb = 2ζ(3)T 3η

π2 (10)

Ye ≈
1
2

(11)

VD ≈
2
√

2ζ(3)GFT
3

π2

Le + η

4

 (12)

MSW-like Mixing

We then consider the thermal term, which is based
on two possible interactions.
For electron neutrinos only:
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Since 〈Eνα〉nνα ∝ T 4 and ε = Eν/T we can write
this in the form:
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So we can write the total potential as:
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We then apply the MSW resonance condition:
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To satisfy this condition, the following must be true:
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We are implementing this swap in the BURST code
architecture. We intend to compare our results to
current limits of BBN parameters.
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