Sterile Neutrinos

The neutrino sector is perhaps the least wellunderstood aspect of the Standard Model. Multiple experiments have detected non-Standard Model behavior – most notably, the reactor anomaly [?], the MiniBoone anomaly, and the gallium anomaly [?] – suggesting the possibility of one or more additional neutrino species. However, a sterile neutrino at the same temperature as the active neutrinos – that is, one with a substantial mixing angle – is not consistent with the radiation energy density measurements of the early universe from Planck and WMAP [?]. However, there are numerous mechanisms to create a sterile neutrino that does not conflict with current cosmological bounds.

For instance, such a neutrino could be produced by Mikheyev-Smirnov-Wolfenstein (MSW) resonant conversion of active neutrinos driven by a net lepton number [?]. Since this production mechanism requires adiabaticity, it would only convert lowenergy active neutrinos – resulting in a non-thermal spectrum [?]. These neutrinos would also be nonrelativistic at much earlier epochs than a thermal sterile neutrino, and could provide a candidate for cold dark matter [?].

Since the n-p ratio at big bang nucleosynthesis (BBN) depends sensitively on the flux of electron neutrinos [?], any conversion between active and sterile neutrinos would affect primordial elemental abundances. Current primordial deuterium measurements have an error bar of < 2% [?]. This allows us to probe the weak interactions at the BBN epoch with precision, as described in Smith et al. [?].

Figure 1: The CMB, as imaged by Planck.

Active-Sterile Neutrino Mixing In Big Bang Nucleosynthesis

L. Gilbert¹, E. Grohs², G. Fuller², C. Ott¹

Department of Astrophysics, California Institute of Technology, Pasadena, California 91125, USA Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA

MSW-like Mixing

We use a self-consistent treatment of weak interactions and neutrino physics through the weak decoupling, big bang nucleosynthesis, and photon decoupling epochs as developed in Grohs et al. [?].

We consider a swap between electron neutrinos and sterile neutrinos only, with some adiabaticity paramater α that determines the fraction of the energy bin that is swapped.

This adiabaticity parameter is equal to the Landau-Zeener jump probability, as below:

$$\alpha = P_{LZ} = 1 - e^{-\pi\gamma/2} \tag{1}$$

$$\mathcal{H} = \left(\frac{1}{V}\frac{dV}{dt}\right)^{-1}\tan 2\theta \tag{2}$$

$$L_{osc}^{res} = \frac{4\pi E_{\nu}}{\delta m^2 \sin 2\theta} \tag{3}$$

$$\gamma = \frac{2\pi \mathcal{H}}{(\hbar c) L_{osc}^{res}} = \frac{1}{2} \left(\frac{1}{V} \frac{dV}{dt} \right)^{-1} \frac{\delta m^2}{(\hbar c) E_{\nu}} \frac{\sin^2 2\theta}{\cos 2\theta} \quad (4)$$

In order to evaluate \mathcal{H} , we must determine the potential seen by an electron neutrino (the potential seen by a sterile being zero). There are two major components to this potential; the so-called "thermal" term and the density term.

We first consider the density term:

$$H(\nu_s) = 0 \qquad (5) \qquad V = \frac{2\sqrt{2}\zeta(3)G_F T^3}{\pi^2} \Big(\mathcal{L}_e + \frac{3}{2} \Big(Y_e - \frac{1}{3} \Big) \eta \Big) - r_\alpha G_F^2 \epsilon T^5 \\
 H(\nu_e) = \frac{3\sqrt{2}}{2} G_F n_b \Big(y_e - \frac{1}{3} \Big) + (6) \qquad (16)$$

$$H(\nu_e) = \frac{3\sqrt{2}}{2} G_F n_b \left(y_e - \frac{1}{3} \right) + \tag{6}$$

$$\sqrt{2G_F} \left(2 \left(n_{\nu_e} - n_{\bar{\nu}_e} \right) + \left(n_{\nu_\mu} - n_{\bar{\nu}_\mu} \right) + \left(n_{\nu_\tau} - n_{\bar{\nu}_\tau} \right) \right)$$

$$\eta = \frac{n_b}{n_{\gamma}} \tag{7}$$

$$\mathcal{L}_{e} = \frac{2(n_{\nu_{e}} - n_{\bar{\nu}_{e}}) + (n_{\nu_{\mu}} - n_{\bar{\nu}_{\mu}}) + (n_{\nu_{\tau}} - n_{\bar{\nu}_{\tau}})}{n_{\gamma}}$$

$$(8)$$

$$n_{\gamma} = \frac{2\zeta(3)T^3}{2} \tag{9}$$

$$n_{b} = \frac{\pi^{2}}{2\zeta(3)T^{3}\eta}$$
(10)

$$Y_e \approx \frac{1}{2} \tag{11}$$

$$V_D \approx \frac{2}{2\sqrt{2}\zeta(3)G_F T^3}{\pi^2} \left(\mathcal{L}_e + \frac{\eta}{4} \right)$$
(12)

MSW-like Mixing

We then consider the thermal term, which is based on two possible interactions. For electron neutrinos only:

$$V_T = -\frac{8\sqrt{2}G_F P_n}{3m_Z^2} \left[\langle E_{e^-} \rangle n_{e^-} + \langle E_{e^+} \rangle n_{e^+}\right] \quad (13)$$

For a neutrino of any flavor,

$$V_T = -\frac{8\sqrt{2}G_F P_n}{3m_W^2} \left[\langle E_{\nu_\alpha} \rangle n_{\nu_\alpha} + \langle E_{\bar{\nu}_\alpha} \rangle n_{\bar{\nu}_\alpha} \right] \quad (14)$$

Since $\langle E_{\nu_{\alpha}} \rangle n_{\nu_{\alpha}} \propto T^4$ and $\epsilon = E_{\nu}/T$ we can write this in the form:

$$V = -r_{\alpha}G_F^2 \epsilon T^5 \tag{15}$$

So we can write the total potential as:

We then apply the MSW resonance condition:

$$V = \frac{\delta m^2 \cos 2\theta}{2\pi} \tag{17}$$

$$2E_{\nu}$$

$$m^{2}cos 2\theta = 2\epsilon TV \tag{18}$$

$$m_{eff}^{2} = \frac{4\sqrt{2}\zeta(3)G_{F}T^{4}\epsilon}{2} \left[\mathcal{L}_{e} + \frac{3}{2} \left[Y_{e} - \frac{1}{2} \right] \eta \right] \quad (19)$$

$$\begin{array}{c} T & \pi^2 & (2e+2)^2 e & 3 \end{array} \\ -2r_\alpha G_F^2 \epsilon^2 T^6 & \end{array}$$

To satisfy this condition, the following must be true:

$$\frac{4(\zeta(3))^2 G_F}{\pi^2 m_{eff}^2 r_{\alpha} T^2} \left(\mathcal{L}_e + \frac{3}{2} \left(Y_e - \frac{1}{3} \right) \eta \right) \ge 1 \qquad (20)$$

We are implementing this swap in the BURST code architecture. We intend to compare our results to current limits of BBN parameters.

[1] G. Rea PK

- Pro of t

References

 G. Mention, M. Fechner, T. Lasserre, T. A. Mueller, D. Lhuillier, M. Cribier, and A. Letourneau. Reactor antineutrino anomaly. <i>PRD</i>, 83(7):073006, April 2011.
Carlo Giunti and Marco Laveder. Statistical significance of the gallium anomaly. <i>Phys. Rev. C</i> , 83:065504, Jun 2011.
Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters. ArXiv e-prints, February 2015.
 X. Shi and G. M. Fuller. New Dark Matter Candidate: Nonthermal Sterile Neutrinos. <i>Physical Review Letters</i>, 82:2832–2835, April 1999.
 K. Abazajian, N. F. Bell, G. M. Fuller, and Y. Y. Y. Wong. Cosmological lepton asymmetry, primordial nucleosynthesis and sterile neutrinos. <i>PRD</i>, 72(6):063004, September 2005.
K. Abazajian, G. M. Fuller, and M. Patel. Sterile neutrino hot, warm, and cold dark matter. PRD, $64(2)$:023501, July 2001.
 M. Shimon, N. J. Miller, C. T. Kishimoto, C. J. Smith, G. M. Fuller, and B. G. Keating. Using Big Bang Nucleosynthesis to extend CMB probes of neutrino physics. JCAP, 5:37, May 2010.
 M. Pettini and R. Cooke. A new, precise measurement of the primordial abundance of deuterium. MNRAS, 425:2477-2486, October 2012.
 C. J. Smith, G. M. Fuller, C. T. Kishimoto, and K. N. Abazajian. Light element signatures of sterile neutrinos and cosmological lepton numbers. <i>PRD</i>, 74(8):085008, October 2006.
E. Grohs, G. M. Fuller, C. T. Kishimoto, and M. Paris. Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon

decoupling epochs. *JCAP*, 5:17, May 2015.

Contact

Lauren Gilbert lgilbert@caltech.edu