Active-Sterile Neutrino Mixing In Big Bang Nucleosynthesis

Sterile Neutrinos

The neutrino sector is perhaps the least well-
understood aspect of the Standard Model. Multiple
experiments have detected non-standard Model be-
havior — most notably, the reactor anomaly |?], the
MiniBoone anomaly, and the gallium anomaly [?]| —

suggesting the possibility of one or more additional
neutrino species. However, a sterile neutrino at the
same temperature as the active neutrinos — that is,
one with a substantial mixing angle — is not consis-
tent with the radiation energy density measurements
of the early universe from Planck and WMAP [?].
However, there are numerous mechanisms to create
a sterile neutrino that does not conflict with current
cosmological bounds.

For instance, such a neutrino could be produced
by Mikheyev-Smirnov-Wolfenstein (MSW) resonant
conversion of active neutrinos driven by a net lep-
ton number |?]|. Since this production mechanism
requires adiabaticity, it would only convert low-
energy active neutrinos — resulting in a non-thermal
spectrum |?]|. These neutrinos would also be non-
relativistic at much earlier epochs than a thermal
sterile neutrino, and could provide a candidate for
cold dark matter |?].

Since the n-p ratio at big bang nucleosynthesis

(BBN) depends sensitively on the flux of electron
any conversion between active and

)

neutrinos |?]
sterile neutrinos would affect primordial elemental
abundances. Current primordial deuterium mea-

surements have an error bar of <2% |?|. This allows

us to probe the weak interactions at the BBN epoch
with precision, as described in Smith et al. |?].

Figure 1: The CMB, as imaged by Planck.
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MSW-like Mixing

We use a self-consistent treatment of weak interac-
tions and neutrino physics through the weak decou-
pling, big bang nucleosynthesis, and photon decou-
pling epochs as developed in Grohs et al. |?].

We consider a swap between electron neutrinos and
sterile neutrinos only, with some adiabaticity para-
mater o that determines the fraction of the energy
bin that is swapped.

This adiabaticity parameter is equal to the Landau-
Zeener jump probability, as below:
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In order to evaluate H, we must determine the po-
tential seen by an electron neutrino (the potential
seen by a sterile being zero). There are two major
components to this potential; the so-called “thermal’
term and the density term.

We first consider the density term:
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MSW-like Mixing

We then consider the thermal term, which is based
on two possible interactions.
For electron neutrinos only:
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For a neutrino of any flavor,
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Since (E, Yn,, o< T*and € = E,/T we can write

this in the form:
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We then apply the MSW resonance condition:
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We are implementing this swap in the BURST code
architecture. We intend to compare our results to
current limits of BBN parameters.
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